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Abstract
We describe a new algorithm for the enumeration of self-avoiding walks on
the square lattice. Using up to 128 processors on a HP Alpha server cluster
we have enumerated the number of self-avoiding walks on the square lattice to
length 71. Series for the metric properties of mean-square end-to-end distance,
mean-square radius of gyration and mean-square distance of monomers from
the end points have been derived to length 59. An analysis of the resulting
series yields accurate estimates of the critical exponents γ and ν confirming
predictions of their exact values. Likewise we obtain accurate amplitude
estimates yielding precise values for certain universal amplitude combinations.
Finally we report on an analysis giving compelling evidence that the leading
non-analytic correction-to-scaling exponent �1 = 3/2.

PACS numbers: 05.50.+q, 02.10.Ox, 05.70.Jk

1. Introduction

The self-avoiding walk (SAW) on regular lattices is one of the most important and classic
combinatorial problems in statistical mechanics [24]. SAWs are often considered in the context
of lattice models of polymers. The fundamental problem is the calculation (up to translation)
of the number of SAWs, cn, with n steps. As most interesting combinatorial problems, SAWs
have exponential growth, cn ∼ Aµnnγ−1, where µ is the connective constant, γ = 43/32 is
a (known) critical exponent [25, 26], and A is a critical amplitude. So one major problem is
the calculation, or at least an accurate estimation of, µ and γ in order to check the theoretical
prediction. A second major problem is the calculation of critical amplitudes, such as A, in order
to test predictions for various universal amplitude combinations for two-dimensional SAWs
[2–4]. This requires, in addition to the calculation of cn, the calculation of metric properties
such as the end-to-end distance and the radius of gyration. Furthermore the enumeration of
SAWs have traditionally served as a benchmark for both computer performance and algorithm
design.
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An n-step self-avoiding walk ω on a regular lattice is a sequence of distinct vertices
ω0, ω1, . . . , ωn such that each vertex is the nearest neighbour of its predecessor. SAWs are
considered distinct up to translations of the starting point ω0. We shall use the symbol Ωn to
mean the set of all SAWs of length n.

In addition we also consider self-avoiding polygons (SAPs). A SAP can be viewed as
a SAW whose end-points ω0 and ωn are the nearest neighbours and which therefore can be
connected to form a closed loop by the addition of a single step. Note that there are 2(n + 1)

SAWs which give rise to a given (n + 1) step SAP. Each vertex of the SAP can be used as ω0,
and we could walk clockwise or counter-clockwise around the perimeter of the SAP.

The enumeration of SAWs and SAPs has a long and glorious history, which for the square
lattice has recently been reviewed in [12]. Suffice to say that early calculations were based
on various direct counting algorithms of exponential complexity, with computing time T (n)

growing asymptotically as λn, where λ = µ ∼ 2.638, the connective constant for SAWs.
Enting [8] was the first to produce a major breakthrough by applying transfer matrix (TM)
methods to the enumeration of SAPs on finite lattices. This so-called finite lattice method
(FLM) led to a very significant reduction in complexity to 3n/4, so λ = 4

√
3 = 1.316 . . . . More

recently we [18] refined the algorithm using the method of pruning and reduced the complexity
to 1.2n. The extension of the FLM to SAW enumeration had to wait until 1993 when Conway
et al [5] implemented an algorithm with complexity 3n/4. The algorithm is difficult to
implement and requires large amounts of physical memory. However, the algorithm cannot be
used to calculate metric properties. In this paper we pursue a different FLM algorithm based
on the same ideas used to improve the SAP algorithm. It appears that this pruning algorithm
has a computational complexity of 1.334n very close to the CEG algorithm. So the CEG will
ultimately beat the pruning algorithm for large enough n. For small n the pruning algorithm
actually uses significantly less memory as we shall show in section 2.4, and it can in addition
be used to calculate metric properties. To our knowledge this is the first time TM methods has
been used to calculate metric properties of SAWs.

The quantities we consider in this paper are

• The number of SAWs of length n, believed to have the asymptotic behaviour

cn = Aµnnγ−1[1 + o(1)] (1.1a)

where µ is the connective constant and γ is a critical exponent. We shall also study the
associated generating function

C(u) =
∞∑

n=0

cnu
n = A�(γ )(1 − uµ)−γ [1 + o(1)] (1.1b)

so the generating function has a singularity at u = uc = 1/µ.
• The number of SAPs of length n, believed to grow asymptotically as

pn = Bµnnα−3[1 + o(1)] (1.2a)

where α is another critical exponent. In this case the generating function behaves as

P(u) =
∞∑

n=0

pnu
n = B�(α − 2)((1 − uµ)2−α[1 + o(1)]. (1.2b)

• The mean-square end-to-end distance of n step SAWs

〈
R2

e

〉
n

= 1

cn

∑
Ωn

(ω0 − ωn)
2 = Cn2ν[1 + o(1)] (1.3a)
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where ν is a new critical exponent. We also look at the generating function

Re(u) =
∑

n

cn

〈
R2

e

〉
n
un = AC�(γ + 2ν)(1 − uµ)−(γ +2ν)[1 + o(1)]. (1.3b)

• The mean-square radius of gyration of n step SAWs

〈
R2

g

〉
n

= 1

cn

∑
Ωn


 1

2(n + 1)2

n∑
i,j=0

(ωi − ωj)
2


 = Dn2ν[1 + o(1)] (1.4a)

with the associated generating function

Rg(u) =
∑

n

(n + 1)2cn

〈
R2

g

〉
n
un = AD�(γ + 2ν + 2)(1 − uµ)−(γ +2ν+2)[1 + o(1)] (1.4b)

where the factors under the sum ensure that the coefficients are integer valued.
• The mean-square distance of a monomer from the end-points of n step SAWs

〈
R2

m

〉
n

= 1

cn

∑
Ωn

[
1

2(n + 1)

n∑
i=0

[
(ω0 − ωj)

2 + (ωn − ωj)
2
]] = En2ν[1 + o(1)] (1.5a)

with the associated generating function

Rm(u) =
∑

n

(n + 1)cn

〈
R2

m

〉
n
un = AE�(γ + 2ν + 1)(1 − uµ)−(γ +2ν+1)[1 + o(1)]. (1.5b)

The critical exponents are believed to be universal in that they only depend on the
dimension of the underlying lattice. µ on the other hand is non-universal. For SAWs in two
dimensions the critical exponents γ = 43/32, α = 1/2 and ν = 3/4 have been predicted
exactly, though non-rigorously, using Coulomb-gas arguments [25, 26].

While the amplitudes are non-universal, there are many universal amplitude ratios. Any
ratio of the metric amplitudes, e.g., D/C and E/C, is expected to be universal [4]. Many
other universal amplitude combinations in particular involving SAPs can be found in [3, 29].
Of particular interest is the linear combination [4, 2] (which we shall call the CSCPS relation)

F ≡
(

2 +
yt

yh

)
D

C
− 2

E

C
+

1

2
(1.6)

where yt = 1/ν and yh = 1 + γ /(2ν) are the thermal and magnetic renormalization-group
eigenvalues, respectively, of the n-vector model at n = 0. In two dimensions (yt = 4/3 and
yh = 91/48, hence 2 + yt/yh = 246/91) Cardy and Saleur [4] (as corrected by Caracciolo
et al [2]) have predicted, using conformal field theory, that F = 0. This conclusion has
been confirmed by the previous high-precision Monte Carlo work [2] as well as by series
extrapolations [13].

Privman and Redner [28] proved that the combination BC/σa0 is universal. σ is an
integer constant such that pn is non-zero when n is divisible by σ . So σ = 1 for the triangular
lattice and 2 for the square and honeycomb lattices. a0 is the area per lattice site and a0 = 1
for the square lattice, a0 = 3

√
3/4 for the honeycomb lattice and a0 = √

3/2 for the triangular
lattice.

The asymptotic form (1.1a) for cn only explicitly gives the leading contribution. In
general one would expect corrections to scaling so

cn = Aµnnγ−1

[
1 +

a1

n
+

a2

n2
+ · · · +

b0

n�1
+

b1

n�1+1
+

b2

n�1+2
+ · · ·

]
. (1.7)

In addition to ‘analytic’ corrections to scaling of the form ak/nk , there are ‘non-analytic’
corrections to scaling of the form bk/n�1+k , where the correction-to-scaling exponent �1 is
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not an integer. In fact one would expect a whole sequence of correction-to-scaling exponents
�1 < �2 . . . , which are both universal and also independent of the observable, that is the
same for cn, pn and so on. Much effort has been devoted to determining the leading non-
analytic correction-to-scaling exponent �1 for two-dimensional SAWs and SAPs. At least two
different theoretical predictions have been made for the exact value of this exponent: �1 = 3/2
based on Coulomb-gas arguments [25, 26], and �1 = 11/16 based on conformal-invariance
methods [30].

In a recent paper [1] we studied the amplitudes and the correction-to-scaling exponents
for two-dimensional SAWs, using a combination of series-extrapolation and Monte Carlo
methods. We enumerated all self-avoiding walks up to 59 steps on the square lattice, and up
to 40 steps on the triangular lattice, measuring the metric properties mentioned above, and
then carried out a detailed and careful analysis of the data in order to accurately estimate the
amplitudes and correction-to-scaling exponent. In this paper we give a detailed account of
the algorithm used to calculate the square lattice series analysed in [1], report on a further
extension of the SAW counts up to 71 steps, analyse the series and confirm to great accuracy
the predicted exact values of the critical exponents and finally we briefly summarize the results
of the analysis from [1].

2. Enumeration of self-avoiding walks

The algorithm we use to enumerate SAWs on the square lattice builds on the pioneering work
of Enting [8] who enumerated square lattice self-avoiding polygons using the finite lattice
method. More specifically our algorithm is based in large part on the one devised by Conway
et al [5] for the enumeration of SAWs. The basic idea of the finite lattice method is to calculate
partial generating functions for various properties of a given model on finite pieces, say W ×L

rectangles of the square lattice, and then reconstruct a series expansion for the infinite lattice
limit by combining the results from the finite pieces. The generating function for any finite
piece is calculated using transfer matrix (TM) techniques.

2.1. Basic transfer matrix algorithm

The most efficient implementation of the TM algorithm generally involves bisecting the finite
lattice with a boundary (this is just a line in the case of rectangles) and moving the boundary
in such a way as to build up the lattice cell by cell. The sum over all contributing graphs
is calculated as the boundary is moved through the lattice. Due to the symmetry of the
square lattice we need only consider rectangles with L � W . SAWs in a given rectangle
are enumerated by moving the intersection so as to add one vertex at a time, as shown in
figure 1. For each configuration of occupied or empty edges along the intersection, we
maintain a generating function for partial walks cutting the intersection in that particular
pattern. If we draw a SAW and then cut it by a line, we observe that the partial SAW to the
left of this line consists of a number of loops connecting two edges (we shall refer to these as
loop ends) in the intersection, and pieces which are connected to only one edge (we call these
free ends). The other end of the free piece is an end point of the SAW so there are at most two
free ends. In applying the transfer matrix technique to the enumeration of SAWs, we regard
them as sets of edges on the finite lattice with the properties:

(1) A weight u is associated with an occupied edge. In some cases one gives different weights
u and v to occupied horizontal and vertical edges, respectively.

(2) All vertices are of degree 0, 1 or 2.
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Figure 1. A snapshot of the boundary line (dashed line) during the transfer matrix calculation on
the square lattice. SAWs are enumerated by successive moves of the kink in the boundary line,
as exemplified by the position given by the dotted line, so that one vertex at a time is added to
the rectangle. To the left of the boundary line we have drawn an example of a partially completed
SAW.

(3) There are at most two vertices of degree 1 and the final graph has exactly two vertices of
degree 1 (the end points of the SAW).

(4) Apart from isolated sites, the final graph has a single connected component.
(5) In some implementations, each graph must span the rectangle from left to right, while

in other implementations each graph must span the rectangle from left to right and from
bottom to top.

We are not allowed to form closed loops, so two loop ends can only be joined if they
belong to different loops. To exclude loops which close on themselves, we need to label the
occupied edges in such a way that we can easily determine whether or not two loop ends
belong to the same loop. The most obvious choice would be to give each loop a unique label.
However, on two-dimensional lattices there is a more compact scheme relying on the fact that
two loops can never intertwine. Each end of a loop is assigned one of two labels depending on
whether it is the lower end or the upper end of a loop. Each configuration along the boundary
line can thus be represented by a set of edge states {σi}, where

σi =




0 empty edge
1 lower loop end
2 upper loop end
3 free end.

(2.1)

If we read from the bottom to the top, the configuration along the intersection of the partial
SAW in figure 1 is {011212320}. It is easy to see that this encoding uniquely describes which
loop ends are connected. In order to find the upper loop end, matching a given lower end,
we start at the lower end and work upwards in the configuration counting the number of ‘1’s
and ‘2’s we pass (the ‘1’ of the initial lower end is not included in the count). We stop when
the number of ‘2’s exceeds the number of ‘1’s. This ‘2’ marks the matching upper end of the
loop. It is worth noting that there are some restrictions on the possible configurations. Firstly,
every lower loop end must have a corresponding upper end, and it is therefore clear that the
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Table 1. The various local ‘input’ states and the ‘output’ states which arise as the boundary line is
moved in order to include one more vertex of the lattice.

0 1 2 3

0 00 12 03 30 01 10 00 02 20 00 03 30 ADD
1 01 10 00 00 NOT allowed 00
2 02 20 00 00 00 00
3 03 30 ADD 00 00 ADD

total number of ‘1’s is equal to the total number of ‘2’s. Secondly, as we look through the
configuration starting from the bottom the number of ‘1’s is never smaller than the number
of ‘2’s. Ignoring the ‘0’s the ‘1’s and ‘2’s can be viewed as perfectly balanced parenthesis.
Those familiar with algebraic languages will immediately recognize that each configuration
(for now treating free ends and empty edges in the same way) of labelled loop ends forms a
Motzkin word [7].

2.1.1. Derivation of updating rules. The updating of a partial generating function depends
on the states of the edges to the left and above the new vertex. When the kink is moved we
insert the edges to the right and below the new vertex. The way to avoid situations leading to
graphs with more than a single connected component is to forbid free ends from terminating
(or joining) at the vertex being processed unless the boundary line intersects no other occupied
edges. In table 1 we have listed the possible local ‘input’ states and the ‘output’ states which
arise as the kink in the boundary is propagated by one step. The rows in this table are labelled
by the state of the left edge, while the columns are labelled by the state of the top edge. Each
panel in the table contains the possible states of the bottom and right edges (in that order). We
shall refer to the configuration before the move as the ‘source’ and a configuration produced
as a result of the move as a ‘target’. In each move the source generating function is multiplied
by uk , where k is the number of new occupied edges (just the number of non-zero entries in
the local output state), and is then added to the target generating function.

In the following we give the details of how some of these updating rules are derived.

00: The left and top edges are empty. We have four possible outputs. We can
leave the bottom and right edges empty (00), insert a new partial loop (12),
or add a new free end on the right (03) or bottom (30) edge. Adding a free
end increases by one the number of degree-1 vertices, so this is only allowed
provided the source has at most one free end. Throughout, this restriction is
indicated by the use of boldface entries.

01, 10, 02, 20: The left or top edge is occupied by a loop end. We can continue this loop
end along either the right or bottom edge. Note that we cannot occupy both
new edges since this would lead to vertices of degree 3. We can also leave
both edges empty. This creates a new degree-1 vertex, and we have to relabel
the matching end of the discontinued loop as free. Relabelling is indicated
by over-lining. The way to identify the matching loop end is described below
(2.1) in the previous section.

03, 30: The left or top edge is occupied by a free end. We can continue the free
end along either the right or bottom edge. We can also leave both edges
empty. This creates a separate component and is only allowed if the resulting
graph is a valid SAW. That is, the source contains no other occupied edges
(and if required both the bottom and top of the rectangle has been touched).



Enumeration of self-avoiding walks on the square lattice 5509

The partial generating function is added to the running total. We mark this
possibility by the entry ADD.

11, 22: Two lower (upper) loop ends are joined and the output edges must be empty
(otherwise we would create vertices of degree greater than 2). The matching
upper (lower) loop end of the innermost loop is relabelled as the new lower
(upper) end of the combined loop.

12: A closed loop would be formed. This is not allowed.
21: Upper and lower loop ends are joined and the output edges must be empty.

13, 31, 23, 32: A free end is joined to a lower (upper) loop end. The output edges are empty
and the matching loop end is relabelled free.

33: Two free ends are joined. This results is a separate component. If the resulting
graph is a valid SAW we add it to the generating function.

2.2. The Conway–Enting–Guttmann (CEG) algorithm

The algorithm used by Conway et al [5] to enumerate SAWs is ingenious but also quite
complicated and relies heavily on manipulations of various generating functions. Here we
shall only give the briefest of outlines of the algorithm sufficient for the reader to appreciate
the differences between this algorithm and the one we used for the enumerations reported in
this paper.

The CEG algorithm leads to the enumeration of anisotropic SAWs, that is the number of
SAWs cm,n with m steps parallel to the y-axis and n-steps parallel to the x-axis. Obviously,
cm,n = cn,m. The major ‘trick’ of the algorithm [5] is the realization that any SAW can be
constructed by combining irreducible components. An irreducible component has at least two
steps along the y-axis in each position, e.g., any line parallel to the x-axis will intersect the
component at least twice (or not at all if the line lies beyond the extent of the component).
There are five different types of irreducible components. The irreducible components are
obtained from enumerations of anisotropic SAWs in rectangles. The SAWs span the rectangle
in the x-direction but not necessarily in the y-direction. For each rectangle four enumerations
are done with different restrictions on the allowed positions of the end-points, e.g., the end-
points may be allowed to lie only on the top border, on the top and/or bottom border etc.
The enumeration of SAWs in a rectangle is done using the basic transfer matrix algorithm
and updating rules as described above. The only difference is that we have to take care when
creating a new free end that it is allowed under the restrictions imposed on the end-points.

If one enumerates anisotropic SAWs in rectangles up to width W it is possible to generate
the series correctly to order Nmax = 4W − 1. Note that this requires the calculation of a two
parameter generating function since variables u and v must be kept for horizontal and vertical
steps, respectively. The generating functions can be truncated if m + n > Nmax.

The CEG algorithm requires the calculation of the anisotropic generating function even
though one may ultimately only be interested in the isotropic SAW counts. However
anisotropic series can be very useful and most importantly can yield valuable insights into the
analytic properties of the generating function. In recent papers [9, 11], a numerical procedure
was given (using anisotropic series) that indicates whether or not a given statistical mechanics
problem is solvable in terms of D-finite functions. A D-finite function can be expressed as the
solution to a linear ordinary differential equation of finite order with polynomial coefficients.

2.3. The pruning algorithm

The use of pruning to obtain more efficient TM algorithms was used for SAPs in [18]. We
required valid SAPs to span the rectangle in both directions and directly enumerate SAPs
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of width exactly W and length L rather than of width �W and length L as done in [8]. At
first glance, this appears inefficient since we have to keep four distinct generating functions
depending on which borders have been touched. However, for SAPs [18] it actually leads to an
algorithm which is both exponentially faster and whose memory requirement is exponentially
smaller. Experimentally it was found that the computational complexity was close to 2n/4,
much better than the 3n/4 of the original approach. We have used similar techniques for the
enumerations of SAWs carried out for this paper.

Pruning, details of which are given in [18] for the SAP case, allows us to discard most of
the possible configurations for large W because they only contribute to SAWs of length greater
than Nmax, where Nmax is the maximal length to which we choose to carry out our calculations.
The value of Nmax is limited by the available computational resources, be they CPU time or
physical memory. Briefly pruning works as follows. Firstly, for each configuration we keep
track of the current minimum number of steps Ncur already inserted to the left of the boundary
line in order to build up that particular configuration. Secondly, we calculate the minimum
number of additional steps Nadd required to produce a valid SAW. There are three contributions,
namely the number of steps required to connect the loops and free ends, the number of steps
needed (if any) to ensure that the SAW touches both the lower and upper borders and finally
the number of steps needed (if any) to extend at least W edges in the lengthwise direction
(remember we only need rectangles with L � W ). If the sum Ncur + Nadd > Nmax we can
discard the partial generating function for that configuration, and of course the configuration
itself, because it would not make a contribution to the SAW count up to the perimeter lengths
we are trying to obtain.

There are no principal differences between pruning SAWs and SAPs though the detailed
implementation is more complicated for the SAW case. We found it necessary to explicitly
write subroutines to handle the three distinct cases where the TM configuration contains zero,
one and two free ends, respectively. But in all cases we essentially have to go through all the
possible ways of completing a SAW in order to find the minimum number of steps required.
This is a fairly straight forward task though quite time consuming.

Note that the pruning algorithm can be used to generate either isotropic or anisotropic
series. That is, unlike the CEG algorithm, we need only to maintain isotropic generating
functions if we are after isotropic counts for SAWs. But if we wish to do so, say in order
to perform the ‘solvability’ check mentioned above [9, 11], we could calculate anisotropic
generating functions (at the expense of greatly increased memory requirements).

Inspired by Knuth’s algorithm for the enumeration of polyominoes [20], we implemented
a couple of further enhancements to our SAW algorithm. The first improvement uses a further
symmetry of the square lattice. When a column has been completed the configuration are
symmetric under reflection. That is the generating functions for the configurations, such as
{010122030} and {030112020}, are identical. This symmetry also extends to the touching
of the upper/lower borders of the rectangle. The second improvement is superior memory
management. A given boundary line configuration only contributes from order n = Ncur +
Nadd, so we need only retain the first Nmax − n terms in the associated generating function. In
our case the maximum memory consumption occur at W = 27. Here there are approximately
1.12 billion distinct configurations and a total of about 4 billion terms in the generating
functions. So on average there is a little less than four terms per configuration. At smaller
widths there are fewer configurations but more terms per configuration. At larger widths
both the number of configurations and the number of terms per configuration decrease.
The important thing to note is that as Nmax is increased the maximal number of terms
seems to approach a constant (with a value less than 4) times the maximal number of
configurations.
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Figure 2. Lin-log plot of the maximal number of TM configurations from the pruned algorithm
with increasing n.

2.4. Computational complexity

The time T (n) required to obtain the number of walks of length n grows exponentially with
n, T (n) ∝ λn. For the CEG algorithm the complexity can be calculated exactly. Time (and
memory) requirements are basically proportional to a polynomial (in n) times the maximal
number of configurations, NConf , generated during a calculation. When the boundary line is
straight and intersects W + 1 edges we can find the exact number of configurations. First look
at the situation with no free ends. The configurations correspond to Motzkin paths [7] (just
map 0 to a horizontal step, 1 to a north-east step, and 2 to a south-east step) and the number
of such paths Mn with n steps is easily derived from the generating function

M(x) =
∑

n

Mnx
x = [1 − x − (1 − 2x − 3x2)1/2]/2x2. (2.2)

The number of transfer matrix configurations NS(W) in the CEG algorithm is simply obtained
by inserting 0, 1 or 2 free ends into a Motzkin path and eliminating the path corresponding to
a configuration of all 0s, hence

NS(W) = MW+1 + (W + 1)MW + (W + 1)WMW−1/2 − 1. (2.3)

When the boundary line has a kink (such as in figure 1) NConf is no longer given exactly
by (2.3). However, it is obvious that NS(W + 1) � NConf � NS(W) so from (2.2) we see that
asymptotically NConf(W) grows like 3W . Since a calculation using rectangles of widths �W

yields the number of SAW up to n = 4W it follows that the complexity of the algorithm is
T (n) ∝ λn with λ = 4

√
3 = 1.316 . . . .

The pruned algorithm is too much difficult to analyse exactly. So all we can give is a
numerical calculation of the growth in the number of configurations with n. That is obtained
by just running the SAW algorithm and measuring the maximal number of configurations
generated for different values of n. The resulting graph is shown in figure 2. The straight
line, drawn as a guide to the eye, has slope λ = 4

√
3 and thus corresponds to the exponential

growth of the CEG algorithm. From this figure it is clear that the computational complexities
of the two algorithms are almost identical. A closer look at the actual numbers does however
reveal that the pruned algorithm appears to have a slightly higher value of λp. Indeed it
appears that increasing n by 8 increases the number of configurations by close to a factor of
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10 (rather than the 9 expected if λp = 4
√

3). This would mean that for the pruned algorithm
λp ≈ 8

√
10 = 1.3335 . . . .

The observed value of λp means that the CEG algorithm is asymptotically superior to the
pruning algorithm, so that for very large values of n it will be not only be faster but require less
memory as well. However for small n the pruning algorithm is highly competitive and can in
fact use significantly less memory. This is because the CEG algorithm uses a two parameter
generating function so memory requirements are ∝n2λn. For the pruning algorithm memory
growth is ∝λn

p, rather than what one may naively have thought ∝nλn
p (see comments at the

end of the previous section). More concretely, we can mention that the calculation in [6] of
SAWs up to n = 51 required 10 GB of memory. The pruning algorithm can do the same job
using less than 150 MB of memory.

2.5. Parallelization

The transfer-matrix algorithms used in the calculations of the finite lattice contributions are
eminently suited for parallel computations. The bulk of the calculations for this paper were
performed on the facilities of the Australian Partnership for Advanced Computing (APAC).
The APAC facility is a HP Alpha server cluster with 125 ES45s each with four 1 GHz chips
for a total of 500 processors in the compute partition. Each server node has at least 4 Gb of
memory. Nodes are interconnected by a low latency high bandwidth Quadrics network.

The most basic concern in any efficient parallel algorithm is to minimize the
communication between processors and ensure that each processor does the same amount
of work and uses the same amount of memory. In practice one naturally has to strike some
compromise and accept a certain degree of variation across the processors.

One of the main ways of achieving a good parallel algorithm using data decomposition
is to try to find an invariant under the operation of the updating rules. That is we seek to
find some property of the configurations along the boundary line which does not alter in a
single iteration. The algorithm for the enumeration of SAWs is quite complicated since not
all possible configurations occur due to pruning, and an update at a given set of edges might
change the state of an edge far removed, e.g., when two lower loop ends are joined we have
to relabel one of the associated upper loop ends as a lower loop end in the new configuration.
However, there is still an invariant since any edge not directly involved in the update cannot
change from being empty to being occupied and vice versa. That is only the kink edges can
change their occupation status. This invariant allows us to parallelize the algorithm in such
a way that we can do the calculation completely independently on each processor with just
two redistributions of the data set each time an extra column is added to the lattice. We have
already used this scheme for SAPs [16] and lattice animals [15] and refer the interested reader
to these publications for further detail. Our parallelization scheme is also very similar to that
used by Conway and Guttmann [6, 12].

2.6. Metric properties

In a recent paper [14] we demonstrated that one can use transfer matrix techniques to calculate
the radius of gyration of SAPs. Below we show how this work can be extended to calculate
the metric properties of SAWs.

2.6.1. Radius of gyrations. We define the radius of gyration according to the vertices of the
SAW. Note that the number of vertices is one more than the number of steps. The radius of
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gyration of n + 1 points at positions ri is

(n + 1)2
〈
R2

g

〉
n

=
∑
i>j

(ri − rj )
2 = n

∑
i

(
x2

i + y2
i

) − 2
∑
i>j

(xixj + yiyj ). (2.4)

This last expression is suitable for a transfer matrix calculation. We actually calculate the
coefficients of the generating function (1.4b), (n + 1)2cn

〈
R2

g

〉
n
. In order to do this we have to

maintain five partial generating functions for each possible boundary configuration, namely

• C(u), the number of (partially completed) SAWs,
• X2

g(u), the sum over SAWs of the squared components of the distance vectors,
• Xg(u), the sum of the x-component of the distance vectors,
• Yg(u), the sum of the y-component of the distance vectors,
• XYg(u), the sum of the ‘cross’ product of the components of the distance vectors, that is∑

i>j (xixj + yiyj ).

As the boundary line is moved to a new position each target configuration S might be
generated from several sources S ′ in the previous boundary position. The partial generation
functions are updated as follows, with (x, y) being the coordinates of the newly added vertex:

C(u, S) =
∑
S ′

un′
C(u, S ′)

X2
g(u, S) =

∑
S ′

un′[
X2

g(u, S ′) + δg(x
2 + y2)C(u, S ′)

]
Xg(u, S) =

∑
S ′

un′
[Xg(u, S) + δgxC(u, S ′)] (2.5)

Yg(u, S) =
∑
S ′

un′
[Yg(u, S) + δgyC(u, S ′)]

XYg(u, S) =
∑
S ′

un′
[XYg(u, S ′) + δgxXg(u, S ′) + δgyYg(u, S ′)]

where n′ is the number of steps added to the SAW and δg = 0 if the new vertex is empty (has
degree 0), δg = 1 if the new vertex is occupied (has degree >0).

Finally, when valid SAWs are completed, the partial generating functions are added to
running totals for each case, and the results for coefficients in the generating function for the
radius of gyration is

(n + 1)2cn

〈
R2

g

〉
n

= n
〈
X2

g

〉
n
− 2〈XYg〉n. (2.6)

2.6.2. End-to-end distance. The updating rules for the end-to-end distance are very similar
to those for the radius of gyration except that we ‘count’ only the degree-1 vertices. We again
maintain five partial generating functions for each possible boundary configuration, namely

• C(u), the number of (partially completed) SAWs,
• X2

e (u), the sum over SAWs of the squared components of the end-point vectors,
• Xe(u), the sum of the x-component of the end-point vectors,
• Ye(u), the sum of the y-component of the end-point vectors,
• XYe(u), the sum of the ‘cross’ product of the components of the end-point vectors.

The partial generation functions are updated as described above (2.5) except that the
corresponding quantity δe = 0 if the new vertex has degree 0 or 2, while δe = 1 if the new
vertex has degree 1.

The results for coefficients in the generating function for the end-to-end distance is

cn

〈
R2

e

〉
n

= 〈
X2

e

〉
n
− 2〈XYe〉n. (2.7)
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2.6.3. Mean-square monomer distance from end points. In order to calculate the mean-
square distance of a monomer from the end points we have to introduce an additional partial
generating function

• XYm(u), the sum of the ‘cross’-product of the components of the end-points and distance
vectors.

This is updated as follows:

XYm(u, S) =
∑
S ′

un′
[XYm(u, S ′) + δgxXe(u, S ′) + δgyYe(u, S ′)

+ δexXg(u, S ′) + δeyYg(u, S ′)]. (2.8)

The results for the coefficients in the generating function for the mean-square monomer
distance from end points is

cn

〈
R2

e

〉
m

= (n − 1)
〈
X2

e

〉
n

+ 2
〈
X2

g

〉
n
− 2〈XYm〉n. (2.9)

2.7. Further details

Finally a few remarks of a more technical nature. The number of contributing configurations
becomes very sparse in the total set of possible states along the boundary line and as is
standard in such cases one uses a hash-addressing scheme. Since the integer coefficients
occurring in the series expansion become very large, the calculation was performed using
modular arithmetic [19]. This involves performing the calculation modulo various integers pi

and then reconstructing the full integer coefficients at the end. The pi are called moduli and
must be chosen so they are mutually prime, e.g., none of the pi have a common divisor. The
Chinese remainder theorem ensures that any integer has a unique representation in terms of
residues. If the largest absolute values occurring in the final expansion is m, then we have to
use a number of moduli k such that p1p2 · · ·pk/2 > m. Since we are using a heavily loaded
shared facility CPU time was more of an immediate limitation than memory. So we used the
moduli p0 = 262 and p1 = 262 −1, which allowed us to represent pn correctly just using these
two moduli.

The calculation of the metric properties requires a lot more memory for the generating
functions, and involves multiplication with quite large integers, so in this case we used prime
numbers of the form 230 − ri for the moduli pi . Up to 4 primes were needed to represent the
coefficients correctly.

We were able to extend the series for the square lattice SAW generating function from
51 terms to 71 terms using at most 100 Gb of memory. The calculations requiring the most
resource were at widths 24–29. These cases were done using 128 processors and took from
16 to 26 h each. We also calculated the metric properties of SAWs up to length 59, thus
extending these series from length 32 obtained previously using direct enumeration. In total
the calculations used about 50 000 CPU hours.

In table 2 we list the number of SAWs from length 52 to 71. The number of SAWs up
to length 51 is tabulated in [12] and [1] (this paper also tabulates the metric properties and
several other series). The numbers are also available from our home page.

3. Analysis of the series

To obtain the singularity structure of the generating functions we used the numerical method
of differential approximants [10]. The functions have critical points at uc with exponents as in
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Table 2. The number, cn, of embeddings of n-step SAWs on the square lattice. Only terms for
n > 51 are listed.

n cn n cn

52 37 325 046 962 536 847 970 116 62 646 684 752 476 890 688 940 276 172
53 99 121 668 912 462 180 162 908 63 1 715 538 780 705 298 093 042 635 884
54 263 090 298 246 050 489 804 708 64 4 549 252 727 304 405 545 665 901 684
55 698 501 700 277 581 954 674 604 65 12 066 271 136 346 725 726 547 810 652
56 1 853 589 151 789 474 253 830 500 66 31 992 427 160 420 423 715 150 496 804
57 4 920 146 075 313 000 860 596 140 67 84 841 788 997 462 209 800 131 419 244
58 13 053 884 641 516 572 778 155 044 68 224 916 973 773 967 421 352 838 735 684
59 34 642 792 634 590 824 499 672 196 69 596 373 847 126 147 985 434 982 575 724
60 91 895 836 025 056 214 634 047 716 70 1 580 784 678 250 571 882 017 480 243 636
61 243 828 023 293 849 420 839 513 468 71 4 190 893 020 903 935 054 619 120 005 916

Table 3. Estimates for the critical point uc and exponent γ obtained from second- and third-order
differential approximants to the series for square lattice SAW generating function. L is the order
of the inhomogeneous polynomial.

Second-order DA Third-order DA

L uc γ uc γ

0 0.379 052 2679(60) 1.343 735(29) 0.379 052 2735(11) 1.343 7397(18)
2 0.379 052 2729(11) 1.343 7388(23) 0.379 052 2752(11) 1.343 7427(22)
4 0.379 052 2720(13) 1.343 7387(32) 0.379 052 2756(27) 1.343 7438(61)
6 0.379 052 27192(81) 1.343 7369(24) 0.379 052 2751(27) 1.343 7429(61)
8 0.379 052 2733(15) 1.343 7395(24) 0.379 052 2752(27) 1.343 7434(63)

10 0.379 052 2739(30) 1.343 744(12) 0.379 052 2751(22) 1.343 7430(39)
12 0.379 052 2740(19) 1.343 7404(34) 0.379 052 2755(63) 1.343 748(11)
14 0.379 052 2738(13) 1.343 7398(22) 0.379 052 2738(25) 1.343 7406(37)
16 0.379 052 2739(12) 1.343 7403(20) 0.379 052 2733(39) 1.343 7408(53)
18 0.379 052 2734(14) 1.343 7398(25) 0.379 052 2753(19) 1.343 7433(41)
20 0.379 052 2749(32) 1.343 7437(87) 0.379 052 2755(25) 1.343 7435(78)

(1.1b)–(1.5b). Our main objective is to obtain accurate estimates for the connective constant µ

and the critical exponents γ and ν. In particular we confirm to a very high degree of precision
the conjectured exact values of the exponents.

Once the exact values of the exponents have been confirmed we turn our attention to
the ‘fine structure’ of the asymptotic form of the coefficients. In particular we are interested
in obtaining accurate estimates for the amplitudes A,C,D and E. We do this by fitting the
coefficients to the form given by (1.1a)–(1.5a). In this case our main aim is to test the validity
of the predictions for the amplitude combinations mentioned in the introduction.

3.1. The SAW generating function

In table 3 we list estimates for the critical point uc and exponent γ of the series for the
square lattice SAW generating function. The estimates were obtained by averaging values
obtained from second- and third-order differential approximants. For each order L of the
inhomogeneous polynomial we averaged over those approximants to the series which used at
least the first 60 terms of the series. The error quoted for these estimates reflects the spread
(basically one standard deviation) among the approximants. Note that these error bounds
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Figure 3. Estimates for γ versus uc (left panel) and γ versus the number of terms used by the
differential approximant (right panel).

should not be viewed as a measure of the true error as they cannot include possible systematic
sources of error. Based on these estimates we conclude that uc = 0.379 052 274(4) and
γ = 1.343 745(15). The estimate for uc is compatible with the much more accurate estimate
uc = 0.379 052 277 73(7) obtained from the analysis of the SAP generating function [16].
The analysis adds further support to the already convincing evidence that the critical exponent
γ = 43/32 = 1.343 75 exactly. However, we do observe that both the central estimates for
both uc and γ are systematically very slightly lower than the expected values.

When analysing series it is always problematic to get a reliable error estimate. So in
trying to confirm, as we are here, the exact value of a critical exponent, it is often useful to plot
the behaviour of the estimates against both uc and the number of terms used by the differential
approximants. In this way it is often possible to gauge more clearly whether or not the high-
order approximants have settled down to the limiting value of the true exponent. In figure 3
we carry out such an analysis. Each point in the left panel corresponds to estimates for uc and
γ obtained from a third-order differential approximant. The right panel shows the estimates
of γ but now plotted against the number of terms used by the differential approximants. The
straight lines indicate the expected exact value of γ , and the highly accurate estimates of uc

are obtained from the analysis of the SAP series. From the plot in the right panel we can
see that the estimates of γ still exhibit a certain upwards drift as the number of terms in the
approximants increases. So the estimates of γ have not yet settled at their limiting value, but
there can be no doubt that the predicted exact value of γ is fully consistent with the estimates.
In the left panel we observe that the (uc, γ )-estimates fall in a narrow range. Note that this
range does not include the intersection point between the exact γ and the precise uc estimates.
This is probably a reflection of the lack of ‘convergence’ to the true limiting values. This view
is further supported by repeating the plot of figure 3, but only using those approximants using
a number of terms at a prescribed interval, which we choose as 51–55, 56–60, 61–65 and
65–71. This corresponds to looking at the plots one would have obtained had the series only
been known up to the lengths 55, 60, 65 and 71, respectively. These plots show that as more
terms are included the (uc, γ )-estimates move closer and closer to the expected intersection
point. This drift is again a clear indication that the estimates have not yet settled at the true
limiting values.
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Table 4. Estimates for the critical point uc and critical exponents obtained from second and third
order differential approximants to the series for the end-to-end distance, radius of gyration, and
monomer distance from the end point.

Re(u)

Second-order DA Third-order DA

L uc γ + 2ν uc γ + 2ν

0 0.379 052 003(90) 2.843 24(62) 0.379 052 101(69) 2.843 33(19)
2 0.379 051 985(57) 2.843 01(96) 0.379 052 116(58) 2.843 36(11)
4 0.379 052 046(81) 2.843 45(18) 0.379 052 113(75) 2.843 36(10)
6 0.379 052 034(80) 2.843 29(39) 0.379 052 119(86) 2.843 34(19)
8 0.379 052 054(69) 2.8430(19) 0.379 052 115(75) 2.843 37(33)

10 0.379 052 035(67) 2.843 29(23) 0.379 052 138(66) 2.843 38(11)

Rg(u)

L Second-order DA Third-order DA

3 uc γ + 2ν + 2 uc γ + 2ν + 2

0 0.379 052 2317(19) 4.843 6019(22) 0.379 052 2289(11) 4.843 5986(13)
2 0.379 052 2317(26) 4.843 6017(29) 0.379 052 2295(10) 4.843 5992(11)
4 0.379 052 2324(41) 4.843 6024(45) 0.379 052 2289(22) 4.843 5986(23)
6 0.379 052 2290(94) 4.843 598(11) 0.379 052 2284(23) 4.843 5980(26)
8 0.379 052 225(15) 4.843 595(16) 0.379 052 2294(43) 4.843 5992(48)

10 0.379 052 2282(21) 4.843 5978(24) 0.379 052 2301(20) 4.843 6000(24)

Rm(u)

Second-order DA Third-order DA

L uc γ + 2ν + 1 uc γ + 2ν + 1

0 0.379 052 045(58) 3.843 21(11) 0.379 052 131(39) 3.843 345(61)
2 0.379 052 056(37) 3.843 256(63) 0.379 052 118(57) 3.843 327(93)
4 0.379 052 044(70) 3.843 23(10) 0.379 052 107(68) 3.843 32(10)
6 0.379 052 050(73) 3.843 22(10) 0.379 052 088(51) 3.843 281(96)
8 0.379 052 081(99) 3.843 29(17) 0.379 052 081(52) 3.843 274(95)

10 0.379 052 069(95) 3.843 26(17) 0.379 052 135(55) 3.843 370(86)

3.2. The metric properties

We now turn our attention to the metric properties. The generating functions are expected to
have a singularity at uc where the end-to-end distance (1.3b) has exponent γ + 2ν = 91/32 =
2.843 75, the radius of gyration (1.4b) has exponent γ + 2ν + 2 = 155/32 = 4.843 75, and
the mean square monomer distance from the end points (1.5b) has exponent γ + 2ν + 1 =
123/32 = 3.843 75. In table 4 we list the estimates obtained from a differential approximant
analysis of these series. In summary we see that applying differential approximants to the
metric series yields for the end-to-end distance uc = 0.379 052 05(15) and 2ν = 2.8434(4),
the radius of gyration yields uc = 0.379 052 230(5) and 2ν + 2 = 4.843 60(2), and the
monomer distance yields uc = 0.379 0521(1) and 2ν + 1 = 3.843 35(15). We immediately
note that the exponent estimates are systematically lower that the expected exact values.
Only the end-to-end distance is marginally consistent with the expected value, while there is
a considerable discrepancy between the radius of gyration estimate and the expected value
(similar though less pronounced for the monomer distance). However, we also note that the
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uc estimates are quite far from the SAP estimates (in which we have considerable confidence)
uc = 0.379 052 277 73(7). So obviously the metric series are not that well behaved and might
have large corrections to scaling.

As for the SAW generating function, we find it useful to plot the estimates for the critical
exponents versus uc and the number of terms. This we have done in figure 4. Clearly the
estimates from the end-to-end distance have not yet converged and it is quite possible that
the exponent estimates will eventually converge to the expected value (see top left panel).
Also in the top right panel it is quite possible that the estimates will approach the point given
by the intersection of the exact exponent value and the precise uc value. The behaviour of
the estimates for radius of gyration and monomer distance series are far more unsettling. In
particular, the exponent estimates from the radius of gyration series appear well converged
to a value 4.843 60 with a narrow spread which clearly does not include the expected exact
value 4.843 75, and in the plot of the exponent versus uc (middle left panel) the estimates
are quite far from the expected intersection. Similar remarks hold for the monomer distance
(bottom panels) though convergence and discrepancy with expected values is less pronounced.
Furthermore, the behaviour of the radius of gyration series is very different to the other series.
In particular we note that in the plots of the exponents versus the number of terms (left panels)
the estimates from the end-to-end and monomer distance seems to increase monotonically
towards the expected value, while the estimates from the radius of gyration starts out above the
expected value, then cross the expected value before apparently settling below the expected
value. This behaviour is quite puzzling. Let us just note that if we look at the similar
plots for the SAW generating function (figure 3) it is clear that convergence has not been
achieved at n = 59 and not yet even at n = 71. It would be therefore surprising if we
should not see a further drift in the exponent estimates for the metric properties with longer
series.

Fortunately, we have the possibility of analysing other series involving the metric
properties. We can look directly at the generating function with coefficients

〈
R2

e

〉
n

and so
on. While this has the advantage that we know that these series have a critical point at uc = 1
it turns out that the estimates of the critical exponents, −2ν − 1 in all cases, behave in exactly
the same manner as the series for the original generating functions. A second, and as we
shall see much more successful approach, is to take the original series and divide them by
the SAW generating function. That is we study the series Re(u)/(u ∗ C(u)) ∝ (u − uc)

−2ν ,
and so on, where again uc = 1/µ. We would not go through all the details here. Suffice
to say that applying differential approximants to the resulting series yields for the end-to-end
distance series uc = 0.379 052 29(2) and 2ν = 1.500 02(3), the radius of gyration series
yields uc = 0.379 0526(4) and 2ν + 2 = 3.5006(4), and the monomer distance series yields
uc = 0.379 0524(2) and 2ν + 1 = 2.5002(4). This clearly confirms that ν = 3/4, exactly.
We note that the error estimates of the modified series is quite different to the original series.
The original end-to-end series has the largest error estimate of the three, while the modified
end-to-end series has the smallest error estimate. The opposite happens for the radius of
gyration series. The quite different behaviour of these series, as compared to the original
ones, is probably even more clearly illustrated in figure 5 where we have plotted the exponent
estimates versus the number of terms for the modified end-to-end and radius of gyration series.
Clearly, the estimates from both of these series appear not yet to have settled at their limiting
values, but it would seem that they are converging towards the expected exponent values. Note
the very different behaviour of the original and modified radius of gyration series. So obviously
dividing by the SAW generating function has a dramatic effect on the metric series. We can
only guess that this procedure leads to modifications in the correction-to-scaling behaviour
thus altering dramatically the convergence properties of the series.



Enumeration of self-avoiding walks on the square lattice 5519

0.3790520 0.3790521 0.3790522 0.3790523 0.3790524
3.8432

3.8433

3.8434

3.8435

3.8436

3.8437

3.8438

uc

γ+2ν+1

30 40 50 60

Number of Terms

3.8420

3.8425

3.8430

3.8435

3.8440

0.3790521 0.3790522 0.3790523 0.3790524 0.3790525
4.8435

4.8436

4.8437

4.8438

γ+2ν+2

30 40 50 60
4.8435

4.8436

4.8437

4.8438

4.8439

4.8440

0.3790519 0.3790520 0.3790521 0.3790522 0.3790523
2.8430

2.8432

2.8434

2.8436

2.8438

γ+2ν

30 40 50 60
2.8420

2.8425

2.8430

2.8435

2.8440

Figure 4. Plots of estimates for the critical exponents versus the critical point (left panels) and
critical exponents versus number of terms (right panels) obtained from third-order differential
approximants to the generating functions Re(u) (top panels), Rg(u) (middle panels) and Rm(u)

(bottom panels).
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Figure 5. Plots of estimates of the critical exponents versus the number of terms obtained
from the third-order differential approximants to the functions Re(u)/(uC(u)) (left panel) and
Rg(u)/(uC(u)) (right panel).

3.3. Non-physical singularities

The generating functions have singularities on the negative axis at u− = −1/µ = −xc. The
exponents at u− are compatible with simple exact values. For the SAW generating function
the exponent is 1/2, for the end-to-end generating function (1.3b) the exponent is also 1/2, for
the radius of gyration generating function (1.3b) the exponent is −3, while for the monomer
distance generating function (1.5b) the exponent is −2.

3.4. Correction-to-scaling exponent

The correction-to-scaling exponent for SAWs is exhaustively studied in a recent paper [1]
using series analysis and Monte Carlo simulations. In particular we performed a very careful
and detailed analysis of the of the 59 step series for the square lattice SAW counts and metric
properties and a 40 step series for the triangular lattice. In that study of the SAW correction-
to-scaling exponents, a consistent picture emerged. We presented a compelling evidence
that the first non-analytic correction term in the generating function for SAWs and SAPs is
�1 = 3/2, as predicted by Nienhuis [25, 26]. We found no evidence for the presence of an
exponent �1 = 11/16 in SAWs and SAPs on the square and triangular lattices, as proposed by
Saleur [30].

Our method of analysis, both here and in [1], is based on direct fitting to the expected
asymptotic form. Obviously (1.1a) only gives the leading term in the asymptotic expansion.
We have to add in both analytic and non-analytic corrections to scaling. Furthermore, we have
to take account of the presence of the singularity at u− = −1/µ. We thus expect cn to have
an asymptotic expansion of the form

cn ∼ µnnγ−1

[
a0 +

k∑
i=1

ai

n�i

]
+ (−µ)nnα−2

[
b0 +

m∑
i=1

bi

n�i

]
(3.1)

where α is the critical exponent occurring in the polygon generating function.
We estimate the coefficients ai and bi , by inserting the estimated value of µ, the exact

values of γ and α, and assumed values of �i and �i . The coefficients can then be fitted
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to the assumed asymptotic form by solving a system of linear equations. By steadily increasing
the number of series coefficients, many estimates for the {ai} and {bi} are found. Provided the
different estimates are consistent over series of different lengths, we assume that they provide
an acceptably accurate estimate of the actual asymptotic coefficients.

A noteworthy feature of the method is that, if a blatantly false exponent is given as input
(for example, specifying �1 = 1/2 for the two-dimensional SAW), the sequence of amplitude
estimates for the term corresponding to that exponent will converge rapidly to zero, giving a
very strong signal that the exponent in question is absent. It was this feature which was used
to rule out �1 = 11/16.

Note that one would expect a whole sequence �j > �1 of non-analytic corrections to
scaling, as well as so-called mixing terms involving the exponents γ and α (see [1] for details).
The first expected mixing term would give a contribution n−59/32 [1]. However, in practice this
is indistinguishable from the n−2 term. Higher order corrections can likewise not be detected
since they make contributions well beyond the range of reasonable extrapolation.

3.5. Amplitudes

In our paper [1] we also obtained accurate amplitude estimates. Here we shall therefore only
briefly review these results then report on the slightly improved estimates for the amplitudes
of the SAW counts based on the extended 71 term series.

Given the value for the non-analytic correction-to-scaling exponent, we more concretely
choose to fit to the form used in [1]:

cn ∼ µnn11/32[a0 + a1/n + a2/n3/2 + a3/n2 + a4/n5/2 + · · ·]
+ (−1)nµnn−3/2[b0 + b1/n + b2/n2 + b3/n3 + · · ·]. (3.2)

Fitting to this form we found [1], using the 59 term SAW counts, a0 = A = 1.177 0425(5)

as well as reasonably accurate estimates for a1–a3 and b0–b2. For the metric properties we
found C = 0.771 24(8),D = 0.108 227(58)(5) and E = 0.339 13(14). A similar analysis
of the triangular lattice data yielded A = 1.183 966(2), C = 0.711 76(66),D = 0.099 87(5)

and E = 0.3130(5).
The ratios D/C and E/C were also estimated by direct extrapolation of the relevant

quotient sequence, using the following method [27]: given a sequence {an} defined for n � 1,
assumed to converge to a limit a∞ with corrections of the form an ∼ a∞(1 + b/n + · · ·),
we first construct a new sequence {hn} defined by hn = ∏n

m=1 am. The generating function∑
hnx

n ∼ (1 − a∞x)−(1+b). Estimates for a∞ and the parameter b can then be obtained from
differential approximants. In this way, we obtained the estimates [1], D/C = 0.140 299(6)

and E/C = 0.439 647(6) for the square lattice and D/C = 0.140 296(6) and E/C =
0.439 649(9) for the triangular lattice.

The amplitude estimates leads to a high precision confirmation of the CSCPS relation
(1.6) F = 0.000 024(25).

In table 5 we have listed the estimates of various universal amplitude combinations,
obtained from the work reported in this paper and elsewhere. As can be seen the estimates
for all lattices are in perfect agreement strongly confirming the universality of the various
combinations.

Finally we turn to the estimation of the amplitude A using the new extended 71 term
series. As in previous work [14, 16] we find it very useful to plot the amplitude estimates
versus 1/n, where cn is the last coefficient used by the fit. In figure 6 we plot the estimates for
the leading amplitude A from various fits. The legend numbers (k,m) indicate the number of
terms used in the fit by each part of the asymptotic expansion (3.1), using the exponents given
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Figure 6. Plots of estimates for the leading amplitude A from various fits of cn to the assumed
asymptotic expansion (3.1).

Table 5. Estimates of universal amplitude combinations on some two-dimensional lattices.

Lattice D/C E/C BC/σa0 F

Square [1, 16] 0.140 299(6) 0.439 647(6) 0.216 83(4) −0.000 024(28)
Triangular [1, 17] 0.140 296(6) 0.439 649(9) 0.2169(2) −0.000 036(34)
Honeycomb [21] 0.1403(1) 0.4397(2) 0.2170(3) −0.000 13(67)
Kagomé [22, 23] 0.140(1) 0.440(1) 0.2144(25) −0.0015(47)

in the explicit form (3.2). From the left panel we see a consistent trend emerging. As the
number of terms used in (k, k)-fits is increased we see that the estimates settle down and that
fits using more terms display less curvature. We take this as a clear indication that the fitting
procedure is robust and that the assumed asymptotic expansion is correct. The fits using 5, 6
and 7 terms each can clearly be extrapolated to a value A = 1.770 423(1). In the right panel
we plot amplitude estimates from (k,m)-fits with k = 6 and m = 6, 5 and 4. We do this
merely to point out that clearly only (k,m)-fits with m close to k are reliable. The (6, 4)-fit
displays a pronounced oscillatory behaviour.

4. Summary and conclusion

We have presented a new algorithm for the enumeration of self-avoiding walks. Numerical
data show that it has computational complexity only slightly worse than the Conway–Enting–
Guttmann algorithm [5]. This means that the CEG algorithm will be superior to enumerating
very long SAWs. However, the new algorithm uses much less memory at shorter lengths and
remains competitive at lengths attainable at present and in the foreseeable future. Furthermore
the new algorithm can be used to calculate metric properties such as the end-to-end distance,
radius of gyration and average distance of monomers from the end points. We have used the
algorithm to extend the series for the number of SAWs on the square lattice up to 71 steps and
calculated the metric properties of SAWs up to 59 steps.

The analysis of the series yielded estimates of the critical exponents γ and ν which
confirmed to a high degree of accuracy the predicted exact values γ = 43/32 and ν = 3/4.
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We reported on results from a comprehensive analysis [1] of the series providing very firm
and convincing evidence that the leading non-analytic correction to scaling is �1 = 3/2, as
well as giving accurate estimates for the critical amplitudes. The amplitude estimates led to a
high precision confirmation of the CSCPS relation (1.6) F = 0.

Acknowledgments

It is a pleasure to thank Tony Guttmann for a careful reading of the manuscript and many
helpful suggestions. The calculations presented in this paper would not have been possible
without a generous grant of computer time on the server cluster of the Australian Partnership
for Advanced Computing (APAC). We also used the computational resources of the Victorian
Partnership for Advanced Computing (VPAC). We gratefully acknowledge financial support
from the Australian Research Council.

References

[1] Caracciolo S, Guttmann A J, Jensen I, Pelissetto A, Rogers A N and Sokal A D 2004 Correction-to-scaling
exponents for two-dimensional self-avoiding walks submitted

[2] Caracciolo S, Pelissetto A and Sokal A D 1990 Universal distance ratios for two-dimensional self-avoiding
walks: corrected conformal invariance predictions J. Phys. A: Math. Gen. 23 L969–74

[3] Cardy J L and Guttmann A J 1993 Universal amplitude combinations for self-avoiding walks, polygons and
trails J. Phys. A: Math. Gen. 26 2485–94

[4] Cardy J L and Saleur H 1989 Universal distance ratios for two-dimensional polymers J. Phys. A: Math. Gen.
22 L601–4

[5] Conway A R, Enting I G and Guttmann A J 1993 Algebraic techniques for enumerating self-avoiding walks on
the square lattice J. Phys. A: Math. Gen. 26 1519–34

[6] Conway A R and Guttmann A J 1996 Square lattice self-avoiding walks and corrections to scaling Phys. Rev.
Lett. 77 5284–7

[7] Delest M P and Viennot G 1984 Algebraic languages and polyominoes enumeration Theor. Comput. Sci. 34
169–206

[8] Enting I G 1980 Generating functions for enumerating self-avoiding rings on the square lattice J. Phys. A: Math.
Gen. 13 3713–22

[9] Enting I G and Guttmann A J 1996 On the solvability of some statistical mechanics systems Phys. Rev. Lett. 76
344–77

[10] Guttmann A J 1989 Asymptotic analysis of power-series expansions Phase Transitions and Critical Phenomena
vol 13 ed C Domb and J L Lebowitz (New York: Academic) pp 1–234

[11] Guttmann A J 2000 Indicators of solvability for lattice models Discrete Math. 217 167–89
[12] Guttmann A J and Conway A R 2001 Square lattice self-avoiding walks and polygons Ann. Comb. 5 319–45
[13] Guttmann A J and Yang Y S 1990 Universal distance ratios for 2D saws: series results J. Phys. A: Math. Gen.

23 L117–9
[14] Jensen I 2000 Size and area of square lattice polygons J. Phys. A: Math. Gen. 33 3533–43
[15] Jensen I 2003 Counting polyominoes: a parallel implementation for cluster computing Computational Science—

ICCS 2003 ed P M A Sloot, D Abramson, A V Bogdanov, J J Dongarra, A Y Zomaya and Y E Gorbachev
(Lecture Notes in Computer Science vol 2659) (Berlin: Springer) pp 203–12

[16] Jensen I 2003 A parallel algorithm for the enumeration of self-avoiding polygons on the square lattice J. Phys.
A: Math. Gen. 36 5731–45

[17] Jensen I Self-avoiding walks and polygons on the triangular lattice in preparation
[18] Jensen I and Guttmann A J 1999 Self-avoiding polygons on the square lattice J. Phys. A: Math. Gen. 32 4867–76
[19] Knuth D E 1969 Seminumerical Algorithms. The Art of Computer Programming vol 2 (Reading, MA: Addison-

Wesley)
[20] Knuth D E 2001 Polynum and Polyslave the program is available from Knuth’s homepage at http://Sunburn.

Stanford.EDU/˜knuth/programs.html#polyominoes
[21] Lin K Y 2000 Universal amplitude combinations for self-avoiding walks and polygons on the honeycomb lattice

Physica A 275 197–206



5524 I Jensen

[22] Lin K Y and Huang J X 1995 Universal amplitude ratios for self-avoiding walks on the kagome lattice J. Phys.
A: Math. Gen. 28 3641–3

[23] Lin K Y and Lue S J 1999 Universal amplitude combinations for self-avoiding polygons on the kagome lattice
Physica A 270 453–61

[24] Madras N and Slade G 1993 The Self-Avoiding Walk (Boston: Birkhäuser)
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